Author: thuso607

Invitation to presentation on 21 Feb: ‘Crises Abound: Health, Climate, Energy, Food, Pandemics… How Supercomputing, AI, and Large-Scale Systems Biology Can Help Address the Major Challenges We Are Facing.’

Invitation to presentation on 21 Feb: ‘Crises Abound: Health, Climate, Energy, Food, Pandemics… How Supercomputing, AI, and Large-Scale Systems Biology Can Help Address the Major Challenges We Are Facing.’

You are invited to attend a presentation at the CHPC by Dr Daniel Jacobson (Chief Scientist for Computational BiologyBiosciencesOak Ridge National Laboratory).  The details are as follows:

Talk Title: Crises Abound: Health, Climate, Energy, Food, Pandemics… How Supercomputing, AI, and Large-Scale Systems Biology Can Help Address the Major Challenges We Are Facing.”

Date: Tuesday, 21 February 2023

Time: 14:00-15:00

Venue: CHPC Lecture Room, 15 Lower Hope Road, Rosebank, Cape Town (To Join via Zoom see details below)

You are most welcome to attend the presentation in-person at the CHPC, but it will also be streamed as part of a Zoom Webinar.  If you want to join the Zoom session please proceed to register here:

https://zoom.us/meeting/register/tJcvcOGopz8rHdRdbV6Kc_8nu3NTr18WKhZ6

Talk Abstract:

The cost of generating biological data is dropping exponentially, resulting in an explosion in the amount of data available for the biological sciences. This flood of data has opened a new era of systems biology in which there are unprecedented opportunities to gain insights into complex biological systems. Integrated biological models need to capture the higher order complexity of the interactions among cellular components. Solving such complex combinatorial problems will give us extraordinary levels of understanding of biological systems. Paradoxically, understanding higher order sets of relationships among biological objects leads to a combinatorial explosion in the search space of biological data. These exponentially increasing volumes of data, combined with the desire to model more and more sophisticated sets of relationships within a cell, across an organism and up to ecosystems and, in fact, climatological scales, have led to a need for computational resources and sophisticated algorithms that can make use of such datasets. The disease, traits or phenotypes of an organism, including its adaptation to its surrounding environment and the interactions with its microbiome, are the result of orchestrated, hierarchical, heterogeneous collections of expressed genomic variants regulated by and related to biotic and abiotic signals. However, the effects of these variants can be viewed as the result of historic selective pressure and current environmental as well as epigenetic interactions, and, as such, their co-occurrence can be seen as omics-wide associations in a number of different manners. We have developed supercomputing and explainable-AI approaches to find complex mechanisms responsible for all measurable phenotypes as well as an organism’s ability to detect and modulate its microbiome.  The result is progress towards a comprehensive systems biology model of an organism and how it has adapted to and responds to its abiotic and biotic environment which has applications in bioenergy, precision agriculture, ecosystem studies, precision medicine, and pandemic prevention among other disciplines.